Algorithm-based Low-power. Dsp System Design: Methodology and Ve:rification
نویسندگان
چکیده
Abstract We present a low-power design methodology based on the multirate approach for DSP systems. Since the datar rate in the resulting multirate implementation is M-times slower (where M is a positive integer) than the original data rate while maintaining the same throughput rate, we can apply this feature to either the low-power implementation, or the speed-up of the DSP systems. This design methodology provides VLSI designers a systematic tool to design low-power DSP systems at the algorithmic/architectural level. The proposed low-power multirate design scheme is verified by the implementation of two FIR VLSI chips with different .architectures: One is the normal pipelined design and the other is the multirate FIR design with downsampling rate equal to two. Using the CMOS power dissipation model, we can predict that the multirate FIR chip consumes only 29% power of the normal FIR chip given the same throughput rate. The predicted results will be verified by measuring real power consumption of both chips.
منابع مشابه
Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملDesigning for Low Power in Complex Embedded DSP Systems
This paper presents an empirical methodology for low power driven complex DSP embedded systems design. Unlike DSP design for high performance, research of low power DSP design has received little attention, yet power dissipation is an increasingly important and growing problem. Highly accurate power prediction models for DSP software are derived. Unlike previous techniques, the methodology deri...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملCoordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm
In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...
متن کاملFrequency Estimation of Unbalanced Three-Phase Power System using a New LMS Algorithm
This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004